p-RIGIDITY AND IWASAWA μ-INVARIANTS (p-RIGIDITÉ ET μ-INVARIANTS DE IWASAWA)
نویسنده
چکیده
Let F be a totally real eld with ring of integers O and p be an odd prime unrami ed in F . Let p be a prime above p. We prove that a mod p Hilbert modular form associated to F is determined by its restriction to the partial Serre-Tate deformation space Ĝm⊗Op. Using this p-rigidity and a linear independence of mod p Hilbert modular forms restricted to the partial Serre-Tate deformation space Ĝm⊗Op, we determine the μ-invariant of certain anticyclotomic p-adic L-functions. The action of p-adic di erential operators on the t-expasion of a p-adic Hilbert modular form around an ordinary point in terms of the partial Serre-Tate co-ordinates also plays an essential role. Based on this, we prove a p-version of a conjecture of Gillard, namely the vanishing of the μ-invariant of Katz p-adic L-function. When the branch character is self-dual with the root number −1, we also determine the μ-invariant of the cyclotomic derivative of Katz p-adic L-function. Soit F un champ totalement réel avec anneau des entiers O et p un premier impair non rami ée en F . Soit p un premier ci-dessus p. Nous montrons qu'une forme modulaire mod p associé à F est déterminée par sa restriction de l'espace de déformation partielle de Serre-Tate Ĝm ⊗Op. L'utilisation de ce p-rigidité et une indépendance linéaire des formes modulaires mod p Hilbert restriction de l'espace de déformation partielle de Serre-Tate Ĝm ⊗ Op, nous déterminons le μ-invariant de certaines fonctions L p-adiques anticyclotomic. L'action des opérateurs di érentiels p-adiques sur les t-expasion d'une forme modulaire p-adique Hilbert autour d'un point commun en termes de coordonnées partielles Serre-Tate joue également un rôle essentiel. Sur cette base, nous prouvons une p-version d'une conjecture de Gillard, à savoir la disparition de l' μ-invariant de L-fonction Katz p-adique. Lorsque le caractère de branche est auto-dual avec le nombre de racines −1, nous déterminons également le μ-invariant de la cyclotomic dérivé de la L-fonction Katz p-adique.
منابع مشابه
Kida’s Formula and Congruences
Let f be a modular eigenform of weight at least two and let F be a finite abelian extension of Q. Fix an odd prime p at which f is ordinary in the sense that the p Fourier coefficient of f is not divisible by p. In Iwasawa theory, one associates two objects to f over the cyclotomic Zp-extension F∞ of F : a Selmer group Sel(F∞, Af ) (whereAf denotes the divisible version of the two-dimensional G...
متن کاملIwasawa Theory of Zp-Extensions over Global Function Fields
In this paper we study the Iwasawa theory of Zp-extensions of global function fields k over finite fields of characteristic p. When d = 1 we first show that Iwasawa invariants are well defined under the assumption that only finitely many primes are ramified in the extension, then we prove that the Iwasawa μ-invariant can be arbitrarily large for some extension of any given base field k. After g...
متن کاملIwasawa Theory of Elliptic Curves at Supersingular Primes over Zp-extensions of Number Fields
In this paper, we make a study of the Iwasawa theory of an elliptic curve at a supersingular prime p along an arbitrary Zp-extension of a number field K in the case when p splits completely in K. Generalizing work of Kobayashi [9] and Perrin-Riou [17], we define restricted Selmer groups and λ±, μ±-invariants; we then derive asymptotic formulas describing the growth of the Selmer group in terms ...
متن کاملComputation of Iwasawa ν-invariants of certain real abelian fields
Let p be a prime number and k a finite extension of Q. It is conjectured that Iwasawa invariants λp(k) and μp(k) vanish for all p and totally real number fields k. Using cyclotomic units and Gauss sums, we give an effective method for computing the other Iwasawa invariants νp(k) of certain real abelian fields. As numerical examples, we compute Iwasawa invariants associated to k = Q( √ f, ζp + ζ...
متن کاملp-RIGIDITY AND IWASAWA μ-INVARIANTS
Let F be a totally real field with ring of integers O and p be an odd prime unramified in F . Let p be a prime above p. We prove that a mod p Hilbert modular form associated to F is determined by its restriction to the partial Serre-Tate deformation space Ĝm ⊗ Op (p-rigidity). Let K/F be an imaginary quadratic CM extension such that each prime of F above p splits in K and λ a Hecke character of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013